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The C++ language is introduced through a series of example programs rel-
evant to high energy physicists. The course introduces basic syntax, object
orientated programming, the Standard Template Library, interfacing with
FORTRAN and high energy packages HepMC, HepPDT, and ROOT. Pro-
gramming skills and design proccesses are introduced within the discussion of
the example programs. The understanding of C++ programming concepts
is tested though set problems, for which associated solutions are provided.
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2 C++ SYNTAX

1 Introduction

C++ is used for a large number of applications within industry and Particle Physics
research. The language provides a large amount of functionality and is still being ex-
tended. This course focuses on core aspects of C++ and expects the reader will consult
reading materials to extend this introduction. The recommended reference materials for
this course are:

• “Ivor Horton’s Beginning C++”, Ivor Horton, Apress, ISBN 1590592271

• “The C++ Programming Language”, Bjarne Stroustrup, Addison-Wesley, 1997

The course is largely based on the ANSI standard and should therefore compile with any
standard C++ compiler. Since most Particle Physics applications are build on LINUX
or OSX, instructions to compile on LINUX or OSX are provided.

2 C++ Syntax

This section discusses basic data types and simple C++ syntax which are largely common
between C++ , C and JAVA.

2.1 A First Program

Programming languages are commonly introduced by writing a program to print a string
to the standard output. The standard output is normally visible on the terminal window
or screen. Using just C++ syntax this is simply demonstrated by example 1:

/* W. H. Bell

** A very simple C++ program to print one line to the standard out

*/

#include <iostream>

using namespace std;

int main() {

cout << "In the beginning..." << endl;

return 0;

}

The execution of every program starts from a main() function. From this function
other functions can be called. The return type of main() is given by the int prefix.
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2.2 Loops, Conditional Statements and Functions 2 C++ SYNTAX

Within the LINUX/UNIX environment the operating system expects a program to re-
turn an exit condition. The value of the return statement from the main() function is
collected by the operating system and is available to a user to query. For example, at a
LINUX shell prompt ‘]$’ one could type:

]$ ./InTheBeginning.exe

In the beginning...

]$ echo $?

0

where $? contains the return value of the last command.

The contents of the first example’s main() function are delimited by the brackets { },
which represent a compound statement. Inside this compound statement there may be
several statements each terminated by a ‘;’ character, together with other compound
statements. In this example the main() function only contains two statements: one to
print a string to the standard output and one to return the exit value to the operating
system. The first of these statements prints a string to the screen by calling the standard
output stream function cout with the insertion operators <<. This operator can be used
to concatenate strings. In the given example the end of line character endl, is appended
to the string "In the beginning...". At the top of the example the declaration of the
cout function is included by including the header file iostream. When this program is
compiled the compiler reads the pre-declaration of cout from the header file and leaves
a call in the machine code to be resolved at link time.

Finally in this first program one of the two comment styles is introduced. Comments
in C++ can be entered in two ways: /* */ can be used to surround the comment area
or // can be used at the start of each comment line.

2.2 Loops, Conditional Statements and Functions

Functions The syntax of loops, conditional statements and functions are demonstrated
by example 2. This example contains an int main() function: the same as seen
within the previous example. Within this main() function three functions are called:
numFingers, pickColour, and quitTime. Each function is pre-declared before the
main() function. Each pre-declaration is a statement where the return type, and input
parameter types must be given. The void type simply means that no input parameter
or return value is expected. All functions must be either predeclared or declared before
they are used. There are three pre-declaration statements before the main() function:

void numFingers(void);

void pickColour(void);

bool quitTime(void);
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where the implementation of these functions is given after the main() function. Follow-
ing the same syntax as the main() function the implementation of each of these three
functions has a return type, a series of input types, and a compound statement enclosing
the function contents. If any input parameters are present then their names must be
given in functions implementation. When a function is called the input variables are
allocated in memory and are initialised with the values passed into the function. If the
implementation is not given in either the code to be compiled, or libraries to be linked
against, a linker error will result.

Conditional Statements Conditional logic is essential for the control of both loops and
selection statements. Most common of the the selection statements are: if, if else, else
and switch statements.1

Example 2 provides a demonstration of the syntax of if, if else, else constructs:
if, if else, else syntax is implemented within the numFingers and quitTime func-
tions of this example. The evaluation of an if statement follows simply: if the logic
within in the () brackets is true then the following compound statement is executed.
if, if else, else statements operate sequentially such that each piece of logic is tested
in turn. If all the logic tests fail then the statement following else is executed.

In some cases where simple sorting is needed a switch statement is a better choice
than a long if, if else... else statement: it provides a simple construct which executes
quickly. An example switch statement is given in the pickColour function of example 2.
While faster than an if, if else, else statement in some cases a switch statement
is limited to the usage of simple cases and therefore the logic allowed can be somewhat
restrictive.

Loops Several types of loops are available to C++ programmers: there are while,
do while and for loops. Each of these loops continue to loop while a condition is true.
All the logic available within an if conditional statement is also available within the
conditional test of a loop statement. Instances of these loop types can be found within
many of the examples provided in this course. To begin with a simple example of a
do while loop can be found in the main() function of example 2. This loop continues
while the boolean evaluated within the while( ); is true. This remains true until the
function quitTime returns a true, where: while loop tests on NOT quitTime return
value.

2.3 Pointers and Arrays

Many languages e.g. Fortran and Java use pointers implicitly. In C++ pointers are used
explicitly. This section introduces the concept of a pointer and demonstrates two basic

1There are other ways of constructing conditional statements but they are not covered in this course.
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implementations.

Pointers are called pointers because they point to a memory address. A pointer can
be used to access the memory address to which it points or the value contained within
the memory address. Example 3 introduces pointers. Looking at example 3 there are
two distinct parts to the program: the call to the function fun and the indexing of array
v[].

Functions and Pointers The function fun is declared as

void fun(int, int *);

with input parameter types int and int *. The second input parameter is a pointer.
When the function is called the memory address of p, &p is assigned to the pointer
declared in fun. The importance of using a pointer in this fashion can be seen from
running the program. After calling fun the value of np is the value which it contained
before the function call, while the value contained in p is the value assigned via the
pointer in fun. Stepping through the program this can be explained. Both np and p are
initialised with the value one.

int np = 1, p = 1;

At the point of initialisation an int sized block of memory is allocated to np and p.
Then the function fun is called with the value of np (default in C++ ) and the address
of p. Within the function fun a new block of memory is allocated for the local variable
np distinct from the variable contained in the main() function. This memory is given
the value from the parameter np contained within main() . The value 2 is assigned to
the local variable np and as the function exits, the memory of the local variable np is
deleted. Therefore the value is never set within the main() function.

Unlike np the value of the variable p declared within the main() is set by using a
pointer. The pointer is initialised with the memory address of the variable p contained
within the main() function. Then the memory address pointed to by the pointer *p

is assigned the value 2. Therefore when returning to the main() function the value
contained in the memory of p is still 2.

Arrays and Pointers An array of type t is a series of memory blocks of which the size
is fixed by the type t. Each element of the array behaves as a variable of type t.

In example 3 an array v is declared with four elements:

int v[] = {1,2,3,4};

This code is equivalent in function to:
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int v[4];

for(int i=0;i<4;i++) v[i]=i;

The size of the array within example 3 is determined by the number of elements within
the brackets {}. After the array has been declared the address of the first element is
assigned to the pointer *pv. It is important to note that the assignment of an address
to a pointer at declaration has different syntax to any following assignment or operation
on the pointers address in general. The declaration of *pv and its assignment of the
address of the first element of the array v could alternatively be written as:

int *pv;

pv=&v[0];

Once the pointer has been assigned the memory address of the first element of the array
v it can be used to access the elements as demonstrated in the example.

2.4 Basic File Streams

File stream functionality is included within a program by including the fstream header
file. Example 5 demonstrates some input and output stream functionality. The program
reads some text from the command line. Then this text is used to determine the file
name and if the file is to be written or read. Depending on the command line input the
main() function calls one of two functions fileWrite or fileRead. The file main.c does
not contain the implementation of fileWrite and fileRead, but includes the header
file FileIO.hh: containing their pre-declaration. This program cannot be linked into an
executable without the implementation of the fileWrite and fileRead functions being
made available at link time. fileWrite and fileRead are in fact implemented in the
file FileIO.cc, which is compiled and then linked with main.o.

The function fileWrite opens an output stream, using the file name supplied.

ofstream file(filename);

Then this file output stream is used in exactly the same way as the standard output
stream in the previous examples. Finally at the end of the file operation the stream is
closed.

file.close();

Closing the file output stream is essential to flush the data stored in the output memory
to the file. (Flushing is not always implicit to a file stream being closed.)

The function fileRead uses an input file stream to read the data from the specified
file name. It is initialised in the similar way to the file output stream.
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ifstream file(filename);

If for some reason the file opening operation fails the file input stream variable file

will be assigned 0. Any integer number that is not 0 is considered logically as true. 0 is
considered logically as false and hence the usage of the if statement.

if(!file) {

cerr << "Error: could not open " << filename << endl;

}

The design of example 5 is illustrated in figure 1 and 2.

Figure 1: A flowchart describing example 5 in general terms.
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main()

Get command line arguments:

Require 2 or 3 arguments:

First additional argument - file name

Second additional argument - read/write flag.

Use the value of the read/write flag to call either

fileRead() or fileWrite().

fileRead()

Open an input stream.

Read the contents of the file until the EOF.

Stream each character number into a integer.

Print these integers in the format of the file.

Close the input stream.

fileWrite()

Open an output stream.

Loop from the numbers 1 to 20.

Write out each number followed by a space to the

active file stream.

After each fifth number is written append a new line.

Close the output stream.

Figure 2: Example 5 in pseudocode.
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2.5 Problems

Reading a Configuration File Write a program to read in the table of particle data
contained in the file problem 01/particle.dat. Read each column of data into a
separate two dimensional char array. Then use these arrays to print each column of
particle.dat to the screen.

1. Start by opening a file as demonstrated in example 5. Then use the input stream
function getline2 to read lines from the file.

char str[MAX_LINE_LENGTH];

int lineLength;

...

...

while(!file.eof()) {

file.getline(str,MAX_LINE_LENGTH);

lineLength = strlen(str);

2. Skip any lines that begin with a comment character:

if(str[0]!="#") { // If character isn’t #

...

}

3. And parse each column of the file, skipping spaces as necessary.

The function strcpy from the cstring header file should be helpful for copying a section
of a C string. The string terminator ‘\0’ can be used to terminate a C string: where
the maximum length is determined by the size of the character array but the minimum
length is set by the position of the string terminator within the array.

File Encryption Write a program to ‘encrypt’ text files by using a binary mask e.g.:

int mask = 0xA3; // A number less than 255

char c; // The character to be read and encrypted/decrypted.

• Read one byte from the standard input, encrypt it and print the result to the
standard output, e.g.:

2The first argument is a character array, the second argument is the length of the array and the return

value is the length of the string
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while((c=std::cin.get())!=EOF) { // Get character until end of file.

//Replace this line with a bitwise operation.

std::cout << c; //output character.

}

• Use one bitwise exclusive OR operation to encrypt and another to decrypt e.g.:
a = a ^ mask

(Two exclusive OR operations cancel.)

• Having written the encryption program, check the executable works by using the
command line syntax:

encrypt.exe < inputfile > outputfile

EPS File Extraction Many postscript files contain embedded eps files which can be ex-
tracted and saved in a separate file. Write a program to parse the file problem 03/document.ps,
saving any instances of

%%BeginDocument:

...

%%EndDocument

to files of appropriate names.

1. Open an input file stream:

std::ifstream file(argv[1]);

if(!file) {

std::cerr << "Error: could not open " << argv[1] << std::endl;

}

else {

...

}

2. Read single lines from problem 03/document.ps:

while(!file.eof()) { // While not end of file

file.getline(line,MAX_LINE_LENGTH); // Read one line.

...

}

3. Use the functions strstr and strlen from cstring to catch included documents:
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char beginDocument[]="%%BeginDocument: "; // declare C string

char endDocument[]="%%EndDocument"; // declare C string

...

...

if((filename=strstr(line,beginDocument))!=NULL) { // If begin document

filename += strlen(beginDocument); // File name follows %%BeginDocument:

outputFile = new std::ofstream(filename); // Open output file

}

where filename is of type char*.

4. Save a copy of the information between and including the %%BeginDocument and
%%EndDocument statements to a separate file.

3 Object Orientated Programming

For many years developers have worked with languages such as FORTRAN and C. These
languages allow developers to write functions and complicated data blocks. While suit-
able for many applications large programs written with these languages quickly become
un-wieldy. Unlike C, C++ allows object orientated programming, offering two improve-
ments: conceptual building blocks, and code re-use. Carefully designed C++ programs
should therefore be easier to understand and contain fewer lines than an equivalent C

program.

Before an object can be created a definition of its contents needs to be written. The
definition of an object is called a class and can be thought of as an extended type. For
example, a variable of type int can be defined by:

int i;

where as a object of ClassName class is instantiated by

ClassName obj;

Each class definition can contain data types and function methods.

3.1 Implementing Objects

The principle of implementing a basic object is outlined in example 7. This example
is composed of three source files: main.cc, BasicParticle.hh and BasicParticle.cc.
The example contains a single class definition of a class called BasicParticle, which is
written in the BasicParticle.hh header file:

12
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class BasicParticle {

...

};

Inside this class declaration there are public member functions, private member
functions and private data members. The member functions are implemented in
BasicParticle.cc.

Constructors Example 7 has a main() function contained within the main.cc file.
Within the main() function two instances of the BasicParticle class are instantiated:

BasicParticle particle1(fourvector1);

BasicParticle particle2(fourvector2);

where each one of these lines calls a constructor of the BasicParticle class,

class BasicParticle {

public:

BasicParticle(double *fourvector);

which is implemented in the BasicParticle.cc source file:

BasicParticle::BasicParticle(double *fourvector)

{

assignFourVector(fourvector);

}

When an object is instantiated the constructor is called: defining an object or instance
of the class in memory. Once an object has been created, member functions of the object
can be called. (It is not possible to call the member functions of a class, except in the
case where the member functions are static3.)

Member Functions and Data Members Following the instantiation of an object of
the BasicParticle class within example 7, two methods of the class are called:

cout << "Mass of particle 1=" << particle1.getMass() << endl;

cout << "pt of particle 1=" << particle1.getPt() << endl << endl;

These methods can be called in this way because they are declared as public in the
header file. Looking in the BasicParticle.hh header file there are two private member
functions:

3The use of Static will be covered briefly in later examples.
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private:

void calculatePt();

void calculateMass();

These member functions can only be called by member functions of objects which are
instantiated from this class definition. Within the given example these member functions
are called by the assignFourVector function when a new four vector is assigned to an
object of BasicParticle type. The object then calculates the pt and mass and assigns
these values to m pt and m mass respectively. m pt and m mass are private data members
of the class BasicParticle the rules governing access to these data members are the
same as those affecting private member functions.

Data members of a given class can be accessed by all member functions within the class
in the same manner as a global variable would be. public data members can also be
accessed by any other function outside the class in a similar manner to a public method.

Compilation and Header Files When each source file is compiled classes must not be
included more than once. When including a header file containing a class definition
it may already be included via including another header file. To prevent a double
declaration, causing compilation errors, precompiler case clauses should be used.

#ifndef CLASS_NAME_HH

#define CLASS_NAME_HH

... class declaration ...

#endif

3.2 Object-Object Communication

In a program several objects may have to interact with each other: each object calling
the member functions of another. To access the data stored within an object a call
should be made to the particular instantiation of the class containing the data. Different
objects may contain different data. Communication between objects therefore needs to
be handled carefully.

There are two common situations where an object needs to communicate with and
other object:

1. An object creates another object and then needs to access data within the created
object.

2. An object is created by another object and then needs to access data within the
object that created it.
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The second example situation can cause trouble. The problem is that the created object
needs to access the parent object and not just another object of the parents class.
Example 8 demonstrates both of these basic communication actions.

Following the execution of example 8, the main() function creates a Parent object
and assigns the address to the pointer *parent. The run method of the object of Parent
type is then called.

Parent *parent = new Parent(id, mass);

parent->run();

The run method creates a new Child object and calls its run method. The Child class
constructor takes one argument: a pointer of Parent type. To allow the Child object
to call the methods of this instantiation of the class Parent a pointer to this class must
be given to the Child object. This is done by using the this pointer as shown. The
this pointer points to this instantiation of the object.

Within the class Child the pointer to the object of Parent type is stored in a private

data member and then is used in the run() method to call the parent objects methods.

void Child::run() {

cout << "parent mass = " << m_parent->getMass() << endl;

cout << "parent id = " << m_parent->getId() << endl;

}

3.3 Operator Overloading

With basic types such as int and float arithmetic can be carried out with operators
such as * and +:

float x=4, y=5, z;

z=x*y;

Arithmetic and other operators can be defined within a class. This is called operator
overloading. An implementation of operator overloading is given in example 9. This ex-
ample uses the same BasicParticle class from example 7, but includes implementation
for the + operator.

BasicParticle BasicParticle::operator+(BasicParticle particle) {

...

}

This operator is defined so that when adding objects of BasicParticle type another
object is created and returned which contains the fourvector resultant of the two input
BasicParticle objects. The addition of the two objects is called from the main() function.
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BasicParticle *particle1 = new BasicParticle(fourvector1);

BasicParticle *particle2 = new BasicParticle(fourvector2);

BasicParticle particle3 = *particle1 + (*particle2);

Note that the brackets round the second pointer argument are necessary to separate the
pointer syntax from the arithmetic operator.

3.4 Inheritance

One class can inherit data members and member functions from another. In example 10
there are set of three classes Bag, ColouredBag, and BeanBag. Each class is made
slightly more complex than the last by inheriting features from the previous one. Bag

is the simplest of these classes and contains only volume information. ColouredBag

inherits from it as stated in the header file ColouredBag.hh

class ColouredBag: public Bag {

...

}

By inheritance any ColouredBag object has access to the methods contained in the Bag

class as demonstrated within the main() function.

ColouredBag colouredBag;

colouredBag.setVolume(40.0);

Data members are inherited in the same way. The behaviour of the members de-
pends on the type of the base class: public , private or protected . If the base
class is public then the protected and public members become protected and
public members of the derived class. The class BeanBag takes advantage of this property
to directly set the value of m bagColour directly:

BeanBag::BeanBag(char colour) {

m_bagColour = colour;

}

where m bagColour is a protected member of the class ColouredBag. If the base
class is protected or private then the public and protected members become both
protected or private according to the base class type. All private methods of the
base class are not accessible by the derived class for all base class types.
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3.5 Polymorphism 3 OBJECT ORIENTATED PROGRAMMING

Base Class

+function1

#function2

Figure 3: A simple UML diagram of a base class with two member functions, where one
calls the other.

3.5 Polymorphism

Polymorphism is only possible through inheritance. Consider the case of figure 3: a
base class which has two member functions, one calling the other. If another class
is created that inherits from the base class then it could call one of the public or
protected member functions of the base class. This could in turn call another member
function illustrated in figure 4. Now consider that the derived class contains two member

Base Class

+function1

#function2

Derived Class

+function3

-function2

Figure 4: A simple UML diagram of a derived class with two member functions, one of
which calls a function in the base class which in turn calls another member
function.

functions, where one of which has the same name and parameter types as the member
function called by the base class. If the derived class calls the base class then without
polymorphism the member function of the base class calls the function within the base
class. Unsurprisingly the base class method does not call the member function within
the derived class.

By introducing polymorphism it is possible to select which of the two member functions
is called: the one within the base class or the one within the derived class. It is therefore
possible to write a program that functions illustrated in figure 5. Implementations of
programs illustrated in figures 4 and 5 are given in example 11.
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Base Class

+function1

#function2

Derived Class

+function3

-function2

Figure 5: A simple UML diagram of a derived class with two member functions, one of
which calls a function in the base class which by polymorphism in turn calls a
member function within the derived class.

Within example 11 a base class BasicParticle and a derived class SmearedParticle
are implemented. There are two forms of the example code given: with polymorphism
and without polymorphism. There is only one difference between the two directories: in
the with/ directory the method calculateMass is declared as virtual void, where as in
the without/ directory the method is simply declared as void.

Without Polymorphism In the without/ directory the SmearedParticle class inher-
its from the BasicParticle base class. In the main() function an instance of the
SmearedParticle class is created and the calculateMass function is called by the
assignFourVector member function. The value of the mass is then printed.

int main() {

double fourvector1[4] = {3.0, 4.0, 5.0, 7.35};

...

SmearedParticle *smearedParticle = new SmearedParticle(fourvector1);

...

cout << "smearedParticle mass = " << smearedParticle->getMass() << endl;

The value returned from the getMass member function of the SmearedParticle object is
the same as that returned from the one called from the BasicParticle object. What is
happening is that the member function assignFourVector is calling the calculateMass
function within the BasicParticle class and not the SmearedParticle class as required.
To get around this problem polymorphism can be used.
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3.6 Interfaces 3 OBJECT ORIENTATED PROGRAMMING

With Polymorphism In the with/ directory the member function calculateMass is
defined as virtual within the header file BasicParticle.hh.

class BasicParticle {

...

protected:

...

virtual void calculateMass();

};

The effect of this is that when the assignFourVector member function is called from the
BasicParticle object then the method calculateMass within the class BasicParticle
is called, but when the assignFourVector method is called via the SmearedParticle

class the method calculateMass within the class SmearedParticle is called.

For polymorphism to work the member function in the base class must be virtual and
identical in its parameter types to the member function declared in the derived class. (It
is good pratice to declare the methods within the derived class that use polymorphism
as virtual too.)

3.6 Interfaces

Interfaces are abstract classes that contain only pure virtual member functions. A pure
virtual member function is defined by declaring a virtual member function to be equal to
zero. For instance, in example 12 an interface containing a single pure virtual member
function is defined in the header file IDataRecord.hh:

class IDataRecord {

public:

virtual int appendRow(int *rowData) = 0;

};

where IDataRecord is the class name of this interface. Any class that contains one
or more pure virtual functions is defined as being abstract and cannot be instantiated.
Furthermore any pure virtual member function defined within a class should not imple-
mented within the class but rather must be implemented by a non-abstract derived class.
Any class that is derived from an abstract class but does not implement the inherited
pure virtual functions will also be an abstract class. Notice therefore an interface can be
used to require a set of member functions to be present in a class that is derived from
it.

In example 12 classes AsciiRecord and BinaryRecord inherit from the interface
IDataRecord. Both classes AsciiRecord and BinaryRecord implement the pure vir-
tual member function of IDataRecord and are therefore not abstract. Again within this
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example the convention is used that the derived classes implementation of the virtual
function is declared as virtual. While this is not necessary for functionality it allows
anyone reading the code to quickly see which member functions are affected by poly-
morphism.

When example 12 executes a pointer of IDataRecord type is assigned the address of
either a AsciiRecord or BinaryRecord object. As within the previous example the type
of object the pointer points to implies which virtual member function is called. Having
created a pointer of IDataRecord type the pointer is then passed to a function:

void fillRecord(IDataRecord *record) {

int arr[] = {1,2,3,4,5,6,7,8,9,10};

record->appendRow(arr);

}

This function calls the member function appendRow defined within the IDataRecord

class. Following polymorphism this method call will actually call the appendRow method
of AsciiRecord or BinaryRecord depending on the type of object IDataRecord points
to. The example therefore illustrates that functions and classes can be written to perform
operations on interfaces rather than on every given class type within an inheritance
structure.

3.7 Templates

Templates can be used in conjunction with classes or functions. Within this course
only class templates will be considered. A class template is a class where one or more
parameters have a template type. In the case where similar functionality is needed to
operate over different types a templated class can be used to generate the needed code.
Instead of writing several classes with different types within the constructors and the
member functions, one template can be written. For each usage of the class template
the compiler generated the needed extra class definitions.

Example 13 contains a simple class template called Array. This class template contains
an array of type T. The type T is determined when the template is instantiated and must
be one of those listed at the bottom of the Array.hh header file.

template class Array<char>;

template class Array<int>;

template class Array<float>;

template class Array<double>;

Within the main() function there are two instantiations of the Array templated class.

int main() {
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...

Array<int> arrayInt(N);

Array<double> arrayDouble(N);

...

where the type T is given inside the <> brackets. Then in the code that follows the
two methods setElement and getElement are called from both template generated
objects. The parameter types of these member functions depends on the type specified
in the instantiation. The files Array.hh and Array.cc demonstrate how to declare
and implement templated constructors, member functions and data members of a class
template.

3.8 Problems

Histogramming Starting from the files provided in the problem 04 directory, complete
the program by writing a class called Histogram. Then follow the instructions in the
README file to build and test the final program.

• The Histogram class should include a constructor:

Histogram(char *filename, int nbins, float min, float max);

and two member functions:

void saveHisto(void); // Save the histogram to file

book(float value, float weight); // Book an entry into the histogram.

where filename is the output filename, nbins is the number of bins, min and max

are the limits, value is the value to be booked and weight is the weight to give
the entry.

• Create private data members to store the number of bins, the entries in each bin,
the limits of the histogram and the file name.

• The saveHisto member function should write the contents of the histogram to a
text file, where each row of the file contains a bin centre and then a number of
entries.

Extended Array Starting from the files provided in the problem 05 directory, complete
the program by creating a class called DataContainer.

• The DataContainer class should store an array and its size as private data mem-
bers:

21



3.8 Problems 3 OBJECT ORIENTATED PROGRAMMING

DATA_TYPE *m_array;

int m_size;

where DATA TYPE should be set via a #define statement in the class’ header file:

#define DATA_TYPE float

• Provide a constructor of the form:

DataContainer::DataContainer(DATA_TYPE *array, int size)

{

m_size = size;

m_array = new DATA_TYPE[_size];

...

• Write member functions to perform arithmetic operators for *, +, and /, which
create a new class containing array elements of the form:

zi = xi ∗ yi , zi = xi + yi , zi = xi/yi

• Write a printArray member function to print the contents of the m array private
data member.

Inheritance Starting from the files provided in the problem 06 directory, complete the
program by writing three classes: Particle, DetParticle and CalParticle.

• Using inheritance, provide constructors of the form:

Particle (int id, double *p3vec);

DetParticle(int id, double *p3vec, int trackId);

CalParticle(int id, double mass, double *p3vec, double eCal);

where p3vec is an array of three elements.

• Store the data passed into each class in private data members.

• Provide public member functions to access the data members of each class.

Transformation Interface Starting from the files provided in the problem 07 directory,
complete the program by writing: (i) an interface class that has member functions to
perform a transformation and a reverse transformation, (ii) a class implementation of
the Transformation interface to perform rotations in two dimensions.
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• Create an interface class ITranslation that contains the virtual member functions
from OffsetTranslation as pure virtual functions.

• Create a class called RotationTranslation that inherits from an interface class
ITranslation.

– Refer to OffsetTranslation for hints on how RotationTranslation might be
implemented.

– A rotation in two dimensions can be calculated via:

x′ = xcosθ − ysinθ

y′ = ycosθ + xsinθ

where θ is the angle of rotation, x is the original x and x′ is the rotated one.

Track Container Starting from the files provided in the problem 08 directory, com-
plete the program by writing a class template called TrackContainer. TrackContainer
should allow float and double template types to be instantiated. The class should also
contain public data members: pt, cos(θ), phi0, d0 and z0, where their type is set by the
template’s instantiation.

4 The Standard Template Library

The Standard Template Library (STL) contains templates which are: containers, and
algorithms to operate on these containers. Within the ISO/ANSI standard there are
serveral containers:

Sequential Containers <deque> <list> <queue> <stack> <vector>

Associative Containers <map> <set>

In addition to these containers STL includes numeric algorithms, generic algorithms
and complex class templates. The following subsections introduce complex, vector,
list, iterators and algorithms. More information on STL in general and areas not
covered in this course can be found in the recommended text books.

4.1 Complex Numbers

Complex numbers are implemented in a complex class. Example 14 introduces some
of the complex operations available. At the top of the example 14 the complex header
is included, making the complex classes and global methods accessible. The allowed
templated types for a complex number are: float, double, and long double. In the
example two of the three complex class types are implemented:
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std::complex<float> complexFloat(3,4);

std::complex<double> complexDouble(-1,0);

The complex class is part of the std namespace. Therefore the class name must be used
either with the std:: specifier explicitly or by quoting using namespace std. The
constructor comes in three forms: including real and imaginary parts as in the example,
the copy constructor and the implicit default constructor. The type of the variables
passed into the constructor must match the type given in the template instantiation.
For example std::complex<float> would mean that complex(float, float) is the
valid constructor.

After the instantiation of the complex objects the rest of example 14 demonstrates
some of the functionality available via the inclusion of <complex>.

4.2 Vectors

For a physicist STL vectors are probably the most useful of the STL container classes.
Basically a vector can be thought of as an array with extra functionality. Unlike an
array vectors do not have a fixed size and elements can be added and removed as
necessary. Beyond this the class provides other advanced functionality. Example 15
demonstrates simple vector usage. Within the main() function one vector of int type
is created.

int main() {

std::vector<int> intVector;

....

Elements are then added to the vector using the push back method. As the vector
increases in size the size is printed out. Then the length of the vector is reduced by
calling the member function pop back, which pops elements off the end of the vector.
Before the elements are popped off the back the value of the element is printed retreived
by calling the method back.

4.3 Iterators

Iterators provide access to the different elements of the data container classes. Iterators
relate in a similar way to the container classes as the pointer did to the array in section 2.
For an iterator to step over the correct amount of memory the iterator must be initialised
from a data container of the same type as it will be used with. Iterators are introduced
in example 16. Contained within this example a list of char type is initialised with
a string. Then an iterator of the corresponding container type is created and assigned
with the address of the first element.
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list<char>::iterator itr;

itr = charList.begin();

Once the iterator has been initialised with the starting address it is then used to iterate
over all of the elements of the list. The value of each element of the list is printed,

cout << *itr << " ";

and the address stored in the iterator is moved on to the next element.

itr++;

4.4 Alogrithms

STL provides a number of powerful algorithms which use iterators to operate on data
containers. Example 17 introduces the sort algorithm. Algorithm functionality is acces-
sible via the inclusion of the header file <algorithm>. To use algorithms interators of
type according to the data container should be created. Within example 17 a vector of
int type initialised with a random jumble of numbers. Two iterators of the same type
are then created.

std::vector<int>::iterator first;

std::vector<int>::iterator last;

These iterators are then assigned the memory addresses of the first and last memory
element of the vector.

first = numbers.begin();

last = numbers.end();

The iterators are then passed to the sort algorithm.

std::sort(first,last);

Since the algorithm methods are part of the std namespace the specifier is used. This
is just one of the methods available. Look at one of the text books or in the header file
for the other methods.

4.5 Strings

While many useful programs can be written with cstrings the string class provides
extra functionality and more flexibility than a simple cstring character array. The
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string class is part of the Standard Template Library (STL) and inherits many useful
features from container base classes. In general terms the string class is a container
which contains an array of characters. Unlike a cstring objects of the string class
have dynamic size and the memory allocated for the storage of characters can be re-
duced or increased as needed. Where strings need to grow quickly it is also possible
to allocate sections of memory such that any appending operation does not necessarily
trigger additional memory operations.

Example 18 demonstrates some of the functionality of the string class. While this ex-
ample implements many of the string class member functions it does not use iterators.
iterators are defined within the string class and can be used in conjunction with some
of its member functions as well as the STL algorithms.

4.6 String Streams

A string stream is a stream connected to a string object. Such a stream allows objects
or simple variables to be inserted and extracted from a string using stream syntax. While
C functions like sscanf are still available within C++ , string streams provide a useful
type safe means of converting variables to and from strings. Example 19 demonstrates
the type safe nature of the stream operators by using an input string stream to convert
a string into both an int and a double.

4.7 Stream Formatting

When writing numbers into a stream it may be necessary to format the numbers to have
a particular precision or width. Example 20 demonstrates some C++ stream formatting
options. Again the advantage of using C++ streams over C functions like printf is that
C++ streams are type safe.

4.8 Problems

Algorithms Create a vector object and fill it with sequential numbers from 0 to 100.
Then use the random shuffle algorithm to shuffle the elements.

std::vector<int> numbers;

...

first = numbers.begin();

last = numbers.end();

std::random_shuffle(first, last);

Print the elements out before and after the random shuffling. Then find the position of
the number 7 within the vector.
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5 Particle Physics Applications

5.1 Interfacing with FORTRAN 77

C++ developers writing physics analysis programs may want to access efficient and
thoroughly tested FORTRAN algorithms. Thankfully C++ and FORTRAN 77 can
be easily linked togther. This course discusses how to link FORTRAN 77 programs
compiled with the gfortran compiler together with C++ programs compiled the g++

compiler. While it may be possible to link to programs compiled with other FORTRAN
compilers it should be noted that the symbols produced from other such compilers may
well not follow the rules given within this course.

Example 21 demonstrates all of the nuances of connecting FORTRAN 77 and C++ together.
This examples fills a FORTRAN common block using a C++ function, prints the con-
tents of the common using a FORTRAN function and then calls a FORTRAN function
which in turn calls a C++ function. The main.cc file includes fortran.hh. This header
file contains the declaration of an external struct forcom , together with the declaration
of two functions implemented in FORTRAN

void commons_(void);

float call_back_(float *,char *, int);

and a function implemented in C++

float mult_a__(float *);

When example 21 executes the fillCommon function is called to fill the FORTRAN
common block FORCOM via the C++ external struct forcom . The syntax for accessing
the struct data members is exactly the same as that used for accessing public data
members of an object. The struct provides access to the FORTRAN common because
it has the same name within the compiled object file and is declared to be external.
The extern prefix causes the compiler not to define an additional memory block for the
struct but instead link the FORTRAN definition of the memory block to the C++ one.
Without the extern prefix the struct would occupy a different memory location and
therefore not provide access to the FORTRAN common block. While the mapping of
the external struct to the common block is possible via choosing the correct name it
will not function properly unless the order, type and size of the variables declared in the
struct match those declared in the FORTRAN common block. Notice however that the
declaration of the C++ struct is not entirely the same as the FORTRAN common, for
example:

int arr[2][3][4]

float farr[5][6]
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has the same memory mapping as

INTEGER ARR(4,3,2)

REAL FARR(6,5)

Notice that the outer array indices commute. The last feature to common block mapping
is that FORTRAN strings do not contain string terminators and therefore can contain
a string as long as the number of elements in the character array.

Once the common block has been filled the

commons_();

function is called to print the values contained within the common block. The function

void commons_(void);

is a declaration of the Fortan SUBROUTINE:

SUBROUTINE COMMONS

When this SUBROUTINE is compiled the gfortran compiler creates an object containing
a symbol of the form:

void commons_(void);

The next thing the main() function does is to call

call_back_(&a,name,size);

which is a call to the FORTRAN FUNCTION

FUNCTION CALL_BACK(A,NAME)

which in turn calls

C = MULT_A(A)

which is in fact a C++ function

float mult_a_(float *a) {

return (*a)*10.;

}
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FORTRAN 77 uses pointers implicitly but when FORTRAN functions are called from
C++ these pointers must be declared explicitly. While the FORTRAN programmer is
not aware of it the gfortran compiler compiles in an extra integer for each string in a
SUBROUTINE or FUNCTION call. The purpose of this extra integer is to store the
length of the FORTRAN string. For example

SUBROUTINE STRINGS(A, B, C)

IMPLICIT NONE

CHARACTER*(*) A, B, C

...

becomes

void strings_(char *a, char *b, char *c,

int size_a, int size_b, int size_c);

5.2 HepMC and HepPDT

When most particle physics programs were written in FORTRAN 77 most generators
provided an event record in the HEPEVT common block format. Most modern experiments
now use C++ , HepMC [1] for their event records, and HepPDT [3] for their particle
data. Example 22 and 25 demonstrate some applications of HepMC and example 25
introduces HepPDT.

π0 decay generator Example 22 demonstrates the use of the HepMC package for storing
the event record of a π0 decay generator. The main() function creates a new event
container, generatates a π0 particle, decays the π0 into two photons, and finally prints
the event record to the screen. The source code for this program is divided up into:
MonteCarlo - containing two static methods to generate a π0 particle and produce a
two body generic decay; LorentzBoost - a wrapper class providing a static method to
lorentz boost a fourvector via the FORTRAN code contained in lorentz.for. When the
program runs all of the event data are recorded within the event record GenEvent. Once
the GenEvent instance has been created GenVertexs can be added. Each GenVertex can
connect a number of different GenParticles together.

The main() function instantiates a GenEvent object and then calls a static member
function of the MonteCarlo class:

HepMC::GenParticle pi0 = MonteCarlo::generate();

to create a GenParticle that describes a π0 particle. The main() function then calls a
second static member function of the MonteCarlo class:
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MonteCarlo::twoBody(evt,&pi0,22,22,0.,0.);

to produce a decay of the π0 into two photons. The twoBody member function starts by
creating a vertex and then adds the π0 particle to it

HepMC::GenVertex *vert = new HepMC::GenVertex();

vert->add_particle_in(parent);

Once the two daughter photons have been produced they are also added to this vertex,

vert->add_particle_out(new HepMC::GenParticle(fvecDaughter1,

particleId1,1));

vert->add_particle_out(new HepMC::GenParticle(fvecDaughter2,

particleId2,1));

and the vertex is then added to the GenEvent event container:

evt->add_vertex(vert);

The complete decay is then printed in the main() function.

5.3 ROOT

ROOT [2] is a data analysis package written in C++ and supported at CERN. Tutorials
and how-tos and other documentation can be downloaded from the ROOT web site [2].
This course focuses on introducing basic features of ROOT needed for a data analysis.

Histograms When analysing large statistical samples histograms provide an important
means of visualising accumulated results. Example 23 uses ROOT to produce a single
one dimensional histogram. Within the main() function memory associated with root
histograms is initialised,

TROOT simple("histos","Histogram Examples");

the root file that will contain the histogram is opened, writing over any existing file of
the same name by quoting "RECREATE",

TFile *rfile = new TFile(argv[1],"RECREATE","Histogram Example");

a one dimension histogram is then created,
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TH1F *histo = new TH1F("histo","Sine Wave",nbinsx,xlow,xup);

the histogram is filled,

histo->Fill(x,w);

then the contents of the root memory including the single one dimensional histogram is
written to the ROOT file.

rfile->Write();

TTrees TTrees are flexible data containers. Each TTree can have several TBranches.
Data are written in rows to all TBranches of a TTree, but can be read back from a single
TBranch or all the attached TBranches at once.

Basic TTree IO and plotting macros are introduced in example 24. The example
provides two options: (i) write a TFile called tree.root containing the TTree, or (ii)
read the TTree back and print values stored in it. When the program writes the TTree

the

void writeTree(char *filename)

function is called. This function opens a new TFile

TFile *root_file = TFile::Open(filename,"RECREATE");

and checks to see if the file is open. In ROOT the last file that was opened becomes the
present working directory and therefore associated with the following TTree instantiation

TTree *tree = new TTree("tree","test tree");

where the key ‘‘tree’’ has to be unique and the title ‘‘test tree’’ does not.

Once a TTree has been instantiated TBranches can be added to it.

tree->Branch("Run",&run,"Run/I");

tree->Branch("Event",&event,"Event/I");

tree->Branch("x",&x,"x/F");

tree->Branch("y",&y,"y/F");

tree->Branch("z",&z,"z/F");

Each of these member function calls causes a new TBranch to be instantiated and con-
nected to the parent TTree object. The arguments of the Branch member function are:
the key, the address of an associated variable and the label. When the TTree member
function
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tree->Fill();

is called the value in the memory at the address assigned to each TBranch is saved into
the TTree. Finally when all the data have been entered into the TTree the TFile is
saved,

root_file->Write();

flushing any remaining data to disk.

The readTree function reads a TTree from a TFile and prints out each entry from
all the TBranches. The TFile is opened and then a pointer to the TTree is collected by
supplying the key name of the TTree

Tree *tree = (TTree*)root_file->Get("tree");

where a cast to a TTree* is necessary because the Get member function of TFile,
(inherited from TDirectory), returns type TObject*. After collecting a pointer to the
TTree, a pointer to each TBranch is collected

TBranch *run_branch = tree->GetBranch("Run");

and the branches addresses are set to be addresses of variables defined within the scope
of the readTree function

run_branch->SetAddress(&run);

Instead of reading each TBranch individually data from the TTree are copied on mass
into the TBranch addresses by calling

tree->GetEvent(i);

If it is necessary to read data from just one TBranch the GetEvent member function of
that branch can be called.

Once the program has been compiled and run the macro plot.C can be used to plot
some of the content of the TTree:

src]$ root

root [0] .x ../macros/plot.C("plot.ps");

root [1] .q

The macro creates another ROOT file containing a single histogram. This can be plotted
from the command line:
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src]$ root -l histos.root

root [1] _file0->ls();

TFile** histos.root Analysis Histograms

TFile* histos.root Analysis Histograms

KEY: TH2F h2;1 x:y {y<20}

root [2] h2->Draw();

root [3] .q

In the plot.C macro it is not possible to use the Write member function of the TFile
class to write this histogram to the TFile because this only writes files from the present
working directory to the TFile. It is possible to write ROOT macros which are not
functions but these are not subject to the same error checking standard and are therefore
often buggy.

Putting it all together Example 25 is the most complicated example of the course and
demonstrates some uses of HepMC, HepPDT, ROOT, and interfacing with FORTRAN.
The example is composed of two programs: TruthNtuple and Analysis. TruthNtuple

uses the PYTHIA event generator to fill a TTree with event records from inelastic non-
diffractive p-p interactions at 10TeV. To do this TruthNtuple calls PYTHIA to generate
an event, and copy the result into the HEPEVT common block. Then HepMC is used to
copy the HEPEVT common block into a GenEvent record. The GenEvent record is then
copied into a set of vectors which are in turn stored in the TTree. To enable ROOT
storage of these STL containers the ROOT dictionaries have to be created. This is
simply done by creating the ROOT dictionaries from the LinkDef.h file.

Once TruthNtuple has been run the Analysis program can be run to read the data
back. This program reads all of the events and prints the contents of the 7th event
to the standard output. The data members associated with the TTree are part of the
Tree McTruth class and were copied from a MakeClass( ) call:

src]$ root pythia.root

root [0] mctree->MakeClass();

root [1] .q

The version from the MakeClass( ) call was then adapted to check if the TBranch was
present in the TTree. From the data stored in the TTree some other useful quantities
such as the pseudorapidity, transverse momentum and the mass of the particles are
calculated.

5.4 Problems

B Mesons from PYTHIA Starting from the files provided in the problem 10 directory
complete program by writing a class called HepevtTree to store all data from the HEPEVT
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common block in a TTree.

Minimum Bias Physics Take example 25 and histrogram the number of charged parti-
cles per unit of pseudorapidity and per unit of transverse momentum. Implement these
histograms in the Analysis program. Then use a ROOT macro to plot the histograms
to ps files.
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